note that about 60% of the total activity moves with the R_F value of $PoCl_6^{2-}$ and thus consists of either reversible hydrolysis products or unhydrolysed Po; only about 40% of the activity moves slower.

Since MATSUURA *et al.*¹ have also observed that the hydrolysis products can only be destroyed in HCl that is much more concentrated than I N, it seems that chromatography with butanol-N HCl can serve for the detection of hydrolysis of Po in HNO₃ solutions.

Laboratorio di Chimica delle Radiazioni e Chimica Nucleare del C.N.E.N.,

and

Istituto di Chimica Generale ed Inorganica, Rome (Italy)

¹ N. MATSUURA, A. OUCHI AND M. KOJIMA, Bull. Chem. Soc. Japan, 34 (1961) 411.

² E. E. DICKEY, J. Chem. Educ., 30 (1953) 525.

³ F. W. LIMA, J. Chem. Educ., 31 (1954) 153.

Received August 3rd, 1961

÷.

٠٤.

J. Chromatog., 7 (1962) 414-415

Separation of 2,4-dinitrophenylhydrazones of aldehydes and ketones on paraffin-treated paper

Several methods have been described for paper chromatographic separation of 2,4-dinitrophenylhydrazones (DNP-hydrazones) of aldehydes and ketones. Methods employing conventional techniques, e.g. MEIGH¹, or procedures in which silicic acid-treated paper is used^{2,3} are unsatisfactory. BUYSKE et al.⁴ suggested separation of DNP-hydrazones on paper treated with N,N-dimethylformamide, but emphasised that a right control of temperature was necessary at 15-18°.

Reversed-phase chromatography seems to be the most satisfactory technique for the separation of the sparingly soluble DNP-hydrazones. Procedures employing this principle have been described by KOSTIR AND SLAVIK⁵, using acetylated paper, and by MEIGH⁶ who treated paper with dichlorodimethylsilane. The details given for the preparation of both types of paper are too laborious and time-consuming. More suitable ways of separating DNP-hydrazones have been reported by ELLIS *et al.*⁷ who used filter paper impregnated with (a) propylene glycol or (b) vaseline, and developed the chromatograms with (a) Skelly Solve C-methanol and (b) aqueous methanol.

Chromatography of DNP-hydrazones of particular groups has also been reported. Thus SUNDT AND WINTER⁸ have described the separation of derivatives of aromatic carbonyl compounds on paper treated with N,N-dimethylformamide using cyclohexane-cyclohexene as the solvent. BREUER⁹ used a similar type of paper, for separa-

J. Chromatog., 7 (1962) 415-417

S. ALLULLI

G. GRASSINI

ting hydrazones of aromatic ketones, but developed the paper with cyclohexanecarbon tetrachloride-dimethylformamide. DUDEK AND STUCHLIK¹⁰ treated paper with ligroin and used it for the separation of DNP-hydrazones of cyclic ketones.

The purpose of this communication is to suggest that the method described previously (Asatoor¹¹) for the separation of 2,4-dinitrophenyl derivatives of amines (DNP-amines) is also applicable to DNP-hydrazones of aldehydes and ketones. The procedure involves reversed-phase chromatography on Whatman.No. 3 MM paper, impregnated with liquid paraffin, using the upper phase of a mixture of chloroform-methanol-water-liquid paraffin (10:10:6:4) as the solvent. Fig. I shows that good separations of DNP-hydrazones of some aliphatic aldehydes and ketones can be achieved in this manner.

DNP-hydrazones of aldehydes and ketones (Table I) were prepared by the method described by MANN AND SAUNDERS¹² and melting points were compared with figures given in the literature (BEILSTEIN¹³; HEILBRON AND BUNBURY¹⁴). Treatment of the paper with liquid paraffin and the preparation of the solvent were carried out as described before¹¹. Chromatograms were run by the descending technique for 16 h. The

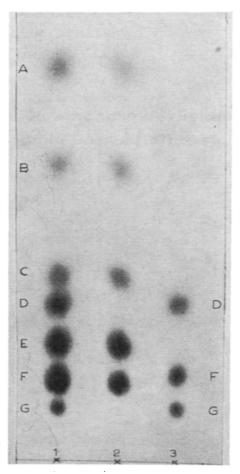


Fig. 1. 2,4-Dinitrophenylhydrazones of aldehydes and ketones. (1) DNP-hydrazone of: A. formaldehyde; B. acetaldehyde; C. propionaldehyde; D. acetone; E. butyraldehyde; F. isovaleraldehyde and methyl ethyl ketone; G. methyl *n*-propyl ketone. (2) A, B, C, E, F (derivatives of aldehydes). (3) D, F, G (derivatives of ketones).

NOTES

spots were conveniently located by their characteristic appearance under u.v. light (Hanovia lamp, fitted with a Wood's glass filter). A permanent record was made by direct photography of u.v. illuminated chromatograms (Fig. 1).

There is considerable variation in R_F values owing to differences in the amount of paraffin incorporated into the paper, hence it is preferable to express the rate of

TABLE I

CHROMATOGRAPHY ON PARAFFIN PAPER

DNP-hydrazone of	RHCHO (mean of 5 experiments)
Formaldehyde	I
Acetaldehyde	0.76
Propionaldehyde	0.47
<i>n</i> -Butyraldehyde	0.29
Isovaleraldehyde	0.19
Acetone	0.39
Methyl ethyl ketone	0.19
Methyl <i>n</i> -propyl ketone	0.13

movement of each spot relative to that of DNP-hydrazone of formaldehyde. This is illustrated in Table I where:

Distance travelled by DNP-hydrazone $R_{HCHO} =$ Distance travelled by DNP-hydrazone of formaldehyde

Department of Medicine, Westminster Hospital, London (Great Britain)

¹ D. F. MEIGH, Nature, 170 (1952) 579.

- ² J. G. KIRCHNER AND G. J. KELLER, J. Am. Chem. Soc., 72 (1950) 1867.
 ³ R. G. RICE, G. J. KELLER AND J. G. KIRCHNER, Anal. Chem., 23 (1951) 194.
 ⁴ D. A. BUYSKE, L. H. OWEN, P. WILDER JR. AND M. E. HOBBS, Anal. Chem., 28 (1956) 910.
 ⁵ J. V. KOSTIR AND K. SLAVIK, Collection trav. chim. tchécoslov., 15 (1950) 17.
- ⁶ D. F. MEIGH, Chem. & Ind. (London), (1956) 986.
- ⁷ R. ELLIS, A. M. GADDIS AND G. T. CURRIE, Anal. Chem., 30 (1958) 475.
- ⁸ E. SUNDT AND M. WINTER, Anal. Chem., 30 (1958) 1620.
- ⁹ E. BREUER, H. LEADER AND S. SAREL, Bull. Research Council Israel, 9A (1960) 43.
- ¹⁰ V. DUDEK AND J. STUCHLIK, Collection Czechoslov. Chem. Communs., 24 (1959) 3797; C.A., 54 (1960) 4273b.
- ¹¹ A. M. ASATOOR, J. Chromatog., 4 (1960) 144.
- ¹² F. G. MANN AND B. C. SAUNDERS, Practical Organic Chemistry, Longmans Green & Co., New York, 1952, pp. 257, 261.
- ¹³ Beilstein's Handbuch der Organischen Chemie, Springer, Berlin, E. II, 15 (1951) 215-216.
- ¹⁴ I. HEILBRON AND H. M. BUNBURY, Dictionary of Organic Compounds, Eyre and Spottiswoode, London, 1953.

Received July 10th, 1961

J. Chromatog., 7 (1962) 415-417

A. M. ASATOOR